| 网站首页 | 开放资源 | 会员资源 | 赞助本站 | 请您留言 | 常见问题 | 
 | 如何上传 | 发表文章 | 我要上传 | 免费资源 |   

您现在的位置: 初中数学 >> 会员资源 >> 中考专栏 >> 中考试题分类 >> 下载信息 用户登录 新用户注册
专 题 栏 目
赞 助 商 广 告
2016年各地中考数学解析版试卷分类汇编(第二期):专题40 动态问题

文件大小: 255 K
资料类别: 试题练习
开 发 商: 佚名
相关链接: 无
下载次数: 本日:   本周:  
       本月:   总计:
软件添加: 审核:刀刀 录入:刀刀
::下载地::  

 

 下载地址1  

::软件简介::

=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,
∵AD∥x轴,
∴∠DAO+∠AOD=180°,
∴∠DAO=90°,
∴∠OAB+∠BAD=∠BAD+∠DAC=90°,
∴∠OAB=∠DAC,
在△OAB和△DAC中,
 ,
∴△OAB≌△DAC(AAS),
∴OB=CD,
∴CD=x,
∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,
∴y=x+1(x>0).
故选:A.
 

二.填空题
1. (2016•四川眉山•3分)如图,已知点A是双曲线 在第三象限分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线 上运动,则k的值是 ﹣3  .
 
【分析】根据反比例函数的性质得出OA=OB,连接OC,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,根据等边三角形的性质和解直角三角形求出OC= OA,求出△OFC∽△AEO,相似比 ,求出面积比 ,求出△OFC的面积,即可得出答案.
【解答】解:∵双曲线 的图象关于原点对称,
∴点A与点B关于原点对称,
∴OA=OB,
连接OC,如图所示,
∵△ABC是等边三角形,OA=OB,
∴OC⊥AB.∠BAC=60°,
∴tan∠OAC= = ,
∴OC= OA,
过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,
∵AE⊥OE,CF⊥OF,OC⊥OA,
∴∠AEO=∠OFC,∠AOE=90°﹣∠FOC=∠OCF,
∴△OFC∽△AEO,相似比 ,
∴面积比 ,
∵点A在第一象限,设点A坐标为(a,b),
∵点A在双曲线 上,
∴S△AEO= ab= ,
∴S△OFC= FC•OF= ,
∴设点C坐标为(x,y),
∵点C在双曲线 上,
∴k=xy,
∵点C在第四象限,
∴FC=x,OF=﹣y.
∴FC•OF=x•(﹣y)=﹣xy=﹣ ,
故答案为:﹣3 .
【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,解直角三角形,相似三角形的性质和判定的应用,能综合运用知识点进行 推理和计算是解此题的关键.
2.(2016•四川内江)如图12所示,已知点C(1,0),直线y=-x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是______.
[答案]10
[考点]勾股定理,对称问题。
[解析]作点C 关于y轴的对称点C1(-1,0),点C关于x轴的对称点C2,连接C1C2交OA于点E,交AB于点D,则此时△CDE的周长最小,且最小值等于C1C2的长.
∵OA=OB=7,∴CB=6,∠ABC=45°.
∵AB垂直平分CC2,
∴∠CBC2=90°,C2的坐标为(7,6).
在 △C1BC2中,C1C2= = =10.
即△CDE周长的最小值是10.
 
故答案为:10.
3.(2016•黑龙江龙东•3分)如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为 2  .
 
【考点】轴对称-最短路线问题;圆周角定理.
【分析】过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,由对称的性质可知 = ,再由圆周角定理可求出∠A′ON的度数,再由勾股定理即可求解.
【解答】解:过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,
连接OB,OA′,AA′,
∵AA′关于直线MN对称,
∴ = ,
∵∠AMN=40°,
∴∠A′ON=80°,∠BON=40°,
∴∠A′OB=120°,
过O作OQ⊥A′B于Q,
在Rt△A′OQ中,OA′=2,
∴A′B=2A′Q=2 ,
即PA+PB的最小值2 .
故答案为:2 .
 


三.解答题
1.(2016•四川攀枝花)如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、QC.
(1)当t为何值时,点Q与点D重合?
(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.
(3)若⊙P与线段QC只有一个公共点,求t的取值范围.
 
【考点】圆的综合题.
【分析】(1)由题意知CD⊥OA,所以△ACD∽△ABO,利用对应边的比求出AD的长度,若Q与D重合时,则,AD+OQ=OA,列出方程即可求出t的值;
(2)由于0<t≤5,当Q经过A点时,OQ=4,此时用时为4s,过点P作PE⊥OB于点E,利用垂径定理即可求出⊙P被OB截得的弦长;
(3)若⊙P与线段QC只有一个公共点,分以下两种情况,①当QC与⊙P相切时,计算出此时的时 间;②当Q与D重合时,计算出此时的时间;由以上两种情况即可得出t的取值范围.
【解答】解:(1)∵OA=6,OB=8,
∴由勾股定理可求得:AB=10,
由题意知:OQ=AP=t,
∴AC=2t,
∵AC是⊙P的直径,
∴∠CDA=90°,
∴CD∥OB,
∴△ACD∽△ABO,
∴ ,
∴AD= ,
当Q与D重合时,

::相关资料::
2016年各地中考数学解析版试卷分类汇编(第二期):专题42 综合性问题
2016年各地中考数学解析版试卷分类汇编(第二期):专题41 阅读理解、图表信息
2016年各地中考数学解析版试卷分类汇编(第二期):专题39 开放性问题
2016年各地中考数学解析版试卷分类汇编(第二期):专题38  方案设计
2016年各地中考数学解析版试卷分类汇编(第二期):专题37  操作探究
2016年各地中考数学解析版试卷分类汇编(第二期):专题36 规律探索
2016年各地中考数学解析版试卷分类汇编(第二期):专题35 尺规作图
2016年各地中考数学解析版试卷分类汇编(第二期):专题34 投影与视图
2016年各地中考数学解析版试卷分类汇编(第二期):专题33 弧长与扇形面积
2016年各地中考数学解析版试卷分类汇编(第二期):专题32 正多边形与圆
::热门资料::

::推荐资料::
::下载说明::
本站非商业赢利站点,部分资源设置点数限制只是通过积极交换的方式,调动各位同行的积极性,扩充本站资源,极少量的自愿赞助费用主要用来维护本站的服务器和托管费用。
如果您发现该软件不能下载,请通知管理员或点击【此处报错】(此处报错只适合“不能下载”一种情况),资料标题、内容错误、资料重复等其他错误请在留言板上直接留言给站长,可获得报错奖励5-10点,谢谢!
*用户们在6个月下载同一份资料不重复扣点
*本站所有资源均为RAR压缩形式,你至少需下载并安装winrar3.2方可解压缩;部分课件是SWF格式,你需下载flash播放器;WPS文件需要下载WPS2003专业版才可以正常使用,GSP文件需下载几何画板才可打开;如果你用OFFICE2003打不开网站上少量用OFFICE2000编辑的文件,请点此下载补丁(本补丁来自微软官方网站,请大家放心下载安装)。
      网友评论:(评论内容只代表网友观点,与本站立场无关!) 发表评论