| 网站首页 | 开放资源 | 会员资源 | 赞助本站 | 请您留言 | 常见问题 | 
 | 如何上传 | 发表文章 | 我要上传 | 免费资源 |   

您现在的位置: 初中数学 >> 会员资源 >> 北师大版 >> 北师八上 >> 4.四边形性质探索 >> 下载信息 用户登录 新用户注册
专 题 栏 目
赞 助 商 广 告
北师大版八年级上册4.7平面图形的密铺课件+教案5份PPT+WORD

文件大小: 1408 K
资料类别: 课件素材
开 发 商: 佚名
相关链接: 无
下载次数: 本日:   本周:  
       本月:   总计:
软件添加: 审核:刀刀 录入:刀刀
::下载地::  

 

 下载地址1  

::软件简介::

北师大版八年级上册4.7平面图形的密铺课件+教案5份
(一)知识目标
平面图形的密铺及多边形密铺的条件.
(二)能力训练目标
1.经历探索多边形密铺(镶嵌)条件的过程,进一步发展学生的合情推理能力.
2.通过探索平面图形的密铺,知道任意一个三角形、四边形或正六边形可以密铺,并能运用这几种图形进行简单的密铺设计.
(三)情感与价值观目标
1.在探索活动过程中,培养学生的合作交流意识和一定的审美情感,使学生进一步体会平面图形在现实生活中的广泛应用.
2.在探索性活动中,开发、培养学生的创造性思维,使其理论联系实际.
教学重点
多边形密铺的条件.
教学难点
运用三角形、四边形或正六边形进行简单的密铺设计.
教学过程
一、巧设情景问题,引入课题
[师]同学们好,老师问大家一个问题:你家铺有地板砖吗?
[生齐]铺有地板砖.
[师]那你家铺的地板砖是什么图形呢?
[生甲]正方形、正六边形.
[师]很好,我们经常能见到各种建筑物的地板,观察地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.(出示投影,展示各种地板图片)
[师]这些地板漂亮吗?
[生齐]非常漂亮.
[师]很好,这种用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的密铺.
这节课我们来探索平面图形的密铺.
二、讲授新课
[师]平面图形的密铺,又称做平面图形的镶嵌,在平面上密铺需注意:各种图形拼接后要既无缝隙,又不重叠.大家愿意美化生活环境吗?
[生齐]愿意.
[师]好,那我们先来探索多边形密铺的条件,大家拿出剪刀和硬纸片分组来做一做:
(1)用形状、大小完全相同的三角形能否密铺?
(2)用同一种四边形可以密铺吗?用硬纸板剪制若干形状、大小完全相同的四边形做实验,并与同伴交流.
(3)在用三角形密铺的图案中,观察每个拼接点处有几个角?它们与这种三角形的三个内角有什么关系?
(4)在用四边形密铺的图案中,观察每个拼接点处的四个角与这种四边形的四个内角有什么关系?(学生动手制作、教师强调:)
[师]大家要注意:三角形、四边形的形状,可以是任意的,但裁剪出的每种图形一定是全等形.(学生分组拼接、讨论,寻找规律,教师巡视指导)
[生甲]用形状、大小完全相同的三角形可以密铺.因为三角形的内角和为180°,所以,用6个这样的三角形就可以组合起来镶嵌成一个平面.
从用三角形密铺的图案中,观察到:每个拼接点处有6个角,这6个角分别是这种三角形的内角(其中有三组分别相等),它们可以组成两个三角形的内角,它们的和为360°.
[生乙]用同一种四边形也可以密铺,在用四边形密铺的图案中,每个拼接点处的四个角恰好是一个四边形的四个内角.四边形的内角和为360°,所以它们的和为360°.
[生丙]从拼接活动中,我们知道了:要用几个形状、大小完全相同的图形不留空隙、不重叠地密铺一个平面,需使得拼接点处的各角之和为360°.
[师]同学们总结得非常好,通过探索活动,我们得知:用形状、大小完全相同的四边形或三角形可以密铺一个平面,那么其他的多边形能否密铺?下面大家来想一想,议一议(出示投影片§4.8 B) (1)正六边形能否密铺?简述你的理由.
(2)分析如下图,讨论正五边形不能密铺.
 
(3)还能找到能密铺的其他正多边形吗?(学生分析、讨论、归纳)
[生甲]正六边形能密铺.因为正六边形的每个内角都是: =120°,在每个拼接点处,恰好能容纳下3个内角,而且相互不重叠,没有空隙.
[生乙]正五边形的每个内角都是108°,360不是108的整数倍.如图所示,在每个拼接点处,三个内角之和为324°,小于360°,而四个内角之和都大于360°.
[师]很好,乙同学说的也就是:在每个拼结处,拼三个内角不能保证没空隙,而拼四个角时,必定有重叠现象.
[生丙]老师,我知道了,要用正多边形镶嵌成一个平面的关键是看:这种正多边形的一个内角的倍数是否是360°,在正多边形里,正三角形的每个内角都是60°,正四边形的每个内角都是90°,正六边形的每个内角都是120°,这三种多边形的一个内角的倍数都是360°,而其他的正多边形的每个内角的倍数都不是360°,所以说:在正多边形里只有正三角形、正四边形、正六边形可以密铺,而其他的正多边形不可密铺.
[师]很好,事实上,对于正n边形,它的每一个内角都为 ,在每个拼接点处,设可以将m个内角彼此无重叠、无缝隙地拼接在一起,由于这些角的和应为360°,因此有 ×m=360°  此式可化为:(m-2)(n-2)=4   m、n都是正整数.
因此:m-2,n-2都是4的因子.  所以,m、n的取值仅有三种可能,即:
 
这正是正多边形的三种可以密铺的情况.当然,一般三角形、四边形也可以密铺.虽然它们的内角未必都相等.(出示投影片§4.8 C)
[师]这是用一种正多边形镶嵌平面的三种情况,图案漂亮吗?
[生齐]漂亮.
[师]好,下来我们可以利用多边形设计一些美丽的图案.
m(m>2) n 平面镶嵌图案
3  

4  

 

::相关资料::
北师大版九年级上册第2章一元二次方程全章总结复习教案+学案9份 PPT+DOC
北师大版九年级上册第2章一元二次方程全章导学案10份 DOC
北师大版九年级上册第2章一元二次方程全章教案 DOC
北师大版九年级上册2.6一元二次方程的应用导学纲要 DOC
北师大版九年级上册2.5一元二次方程根与系数的关系导学纲要 DOC
北师大版九年级上册第二章一元二次方程全章学案9份第2套 DOC
北师大版九年级上册第二章一元二次方程全章学案9份 DOC
北师大版九年级上册2.4用因式分解法解一元二次方程教学反思+ 说课稿+课件(3份)
北师大版九年级上册第2章一元二次方程全章校本作业9份 DOC
北师大版九年级上册第2章一元二次方程全章学案5份 DOC
::热门资料::

::推荐资料::
::下载说明::
本站非商业赢利站点,部分资源设置点数限制只是通过积极交换的方式,调动各位同行的积极性,扩充本站资源,极少量的自愿赞助费用主要用来维护本站的服务器和托管费用。
如果您发现该软件不能下载,请通知管理员或点击【此处报错】(此处报错只适合“不能下载”一种情况),资料标题、内容错误、资料重复等其他错误请在留言板上直接留言给站长,可获得报错奖励5-10点,谢谢!
*用户们在6个月下载同一份资料不重复扣点
*本站所有资源均为RAR压缩形式,你至少需下载并安装winrar3.2方可解压缩;部分课件是SWF格式,你需下载flash播放器;WPS文件需要下载WPS2003专业版才可以正常使用,GSP文件需下载几何画板才可打开;如果你用OFFICE2003打不开网站上少量用OFFICE2000编辑的文件,请点此下载补丁(本补丁来自微软官方网站,请大家放心下载安装)。
      网友评论:(评论内容只代表网友观点,与本站立场无关!) 发表评论